bryły obrotowe zadania i rozwiązania

Otrzymałeś(aś) rozwiązanie do zamieszczonego zadania? - podziękuj autorowi rozwiązania! Kliknij bryły obrotowe - zadania. Post autor: Ola » 22 lut 2009 Ruch obrotowy bryły sztywnej – zadania Zad 1. Walec obraca się ruchem jednostajnie przyspieszonym wokół swojej osi symetrii ( 0 = 0), osiągając po 8 s prędkość kątową 25,12 rad/s. Oblicz przyspieszenie kątowe i liczbę obrotów. Odp. 3,14 rad/s2, 16 Zad. 2 Bryły obrotowe Post autor: kompas1910 » 07 cze 2009, 14:13 oblicz pole powierzchni całkowitej i objętość walca opisanego na sześcianie o objętości 216dm3 (decymetra sześciennego). Bryły obrotowe ważne na jutro!!!daje naj 1.przekątna przekroju osiowego walca ma długość 8cm i jest nachylony do podstawy pod kątem 60°. Oblicz objętość i pole powierzchni całkowitej tej bryły. Chodzi o takie wymagania, jak „(I.2) weryfikowanie i interpretowanie otrzymanych wyników oraz ocena sensowności rozwiązania”, czy „(III.2) dobieranie modelu matematycznego do prostej sytuacji”. Analizowanie złożonych zadań (zwłaszcza tekstowych) pomaga wzmocnić te kompetencje, dlatego warto im poświęcić trochę czasu, zamiast nonton drama china forever love sub indo. Na kuli opisano stożek, o najmniejszej objętości. Oblicz stosunek pola powierzchni tego stożka do pola powierzchni kuli. Pole powierzchni bocznej stożka o wysokości 12 i promieniu podstawy 5 jest równeA. $60\pi$B. $25\pi$C. $144\pi$D. $65\pi$ Pole powierzchni bocznej stożka o wysokości 24 i promieniu podstawy 7 jest równeA. $175\pi$B. $49\pi$C. $576\pi$D. $168\pi$ Pole powierzchni bocznej stożka o wysokości 40 i promieniu podstawy 9 jest równeA. $81\pi$B. $369\pi$C. $1600\pi$D. $360\pi$ Metalowy stożek, którego tworząca o długości 12 cm jest nachylona do płaszczyzny podstawy pod kątem $30^{\circ}$, przetopiono na 48 jednakowych kulek. Oblicz promień kulki. Powierzchnia boczna stożka po rozwinięciu jest półkolem o promieniu 12 cm. Podstawa tego stożka jest kołem promieniuA. 12 cmB. 6 cmC. 3 cmD. 1 cm Kąt rozwarcia stożka ma miarę $120^\circ$, a tworząca tego stożka ma długość $6$. Promień podstawy stożka jest równyA. $3$B. $6$C. $3\sqrt{3}$D. $6\sqrt{3}$ zapytał(a) o 19:37 Rozwiązanie zadania z brył obrotowych Oto treść zadania:Rozwinięcie powierzchni bocznej stożka to 3/4 koła o r=4cm. Ile wynosi pole powierzchni całkowitej tego stożka?Proszę o szybkie rozwiązanie,jest mi ono bardzo potrzebne :) Odpowiedzi odpowiedział(a) o 19:43 Pole boczne stożka to 3/4 pola koła o promieniu równym 4, więc:Pb = 3/4 * Pi * 4^2Pb = 12 * PiWzór na pole boczne stożka:Pb = Pi * r * lPi * r * l = 12 * PiTworząca stożka jest równa promieniowi tego pierwszego koła, czyli wynosi 4 * r * 4 = Pi * 12 /: Pi4r =12 /: 4r = 3Promień podstawy stożka jest równy 3, liczymy pole całkowite:Pc = Pi * r * (r + l)Pc = Pi * 3 * (3 + 4)Pc = 21 * Pi [cm^2] Pole boczne stożka to 3/4 pola koła o promieniu równym 4, więc:Pb = 3/4 * Pi * 4^2Pb = 12 * PiWzór na pole boczne stożka:Pb = Pi * r * lPi * r * l = 12 * PiTworząca stożka jest równa promieniowi tego pierwszego koła, czyli wynosi 4 * r * 4 = Pi * 12 /: Pi4r =12 /: 4r = 3Promień podstawy stożka jest równy 3, liczymy pole całkowite:Pc = Pi * r * (r + l)Pc = Pi * 3 * (3 + 4)Pc = 21 * Pi [cm^2] Uważasz, że ktoś się myli? lub Pole powierzchni bocznej stożka o wysokości 4 i promieniu podstawy 3 jest równeA. $9\pi$B. $12\pi$C. $15\pi$D. $16\pi$ Objętość stożka o wysokości 8 i średnicy podstawy 12 jest równaA. $124 \pi$B. $96\pi$C. $64\pi$D. $32\pi$ Przekątna przekroju osiowego walca jest nachylona do jego płaszczyzny podstawy pod kątem $45^\circ$. Wysokość walca ma długość $8$. Objętość walca jest równa:A. $216\pi$B. $128\pi$C. $64\pi$D. $32\pi$ Kula ma objętość $V=288\pi$. Promień $r$ tej kuli jest równyA. 6B. 8C. 9D. 12 Przekrojem osiowym stożka jest trójkąt równoboczny o boku długości 6. Objętość tego stożka jest równaA. $27\pi\sqrt{3}$B. $9\pi\sqrt{3}$C. $18\pi$D. $6\pi$ Promień AS podstawy walca jest równy wysokości OS tego walca. Sinus kąta OAS (zobacz rysunek) jest równyA. $\frac{\sqrt{3}}{2}$B. $\frac{\sqrt{2}}{2}$C. $\frac{1}{2}$D. $1$ Dany jest stożek o wysokości 6 i tworzącej $3\sqrt{5}$. Objętość tego stożka jest równaA. $36\pi$B. $18\pi$C. $108\pi$D. $54\pi$ Zagadnienia: matematyka - podstawówka, gimnazjum - zadania z pełnym rozwiązaniem: bryły obrotowe, powstawanie brył, objętości i pole powierzchni całkowitej Zadanie 1. Oblicz objętość i pole powierzchni całkowitej brył:- walca o promieniu podstawy 3cm i wysokości 10cm, Wynik Rozwiązanie - stożka o promieniu podstawy 6cm, wysokości 8cm i tworzącej 10cm, Wynik Rozwiązanie - kuli o promieniu 6cm. Wynik Rozwiązanie Zadanie 2. Oblicz objętość stożka o promieniu podstawy 3cm i tworzącej o długości 5cm. Wynik Rozwiązanie Zadanie 3. Oblicz pole powierzchni całkowitej kuli o objętości 36. Wynik Rozwiązanie Zadanie 4. Oblicz wysokość walca o objętości 108 i promieniu podstawy o długości 6cm. Wynik Rozwiązanie Zadanie 5. Oblicz objętość brył powstałych poprzez obrót:- prostokąta o wymiarach 4cm x 6cm, wokół krótszego boku, Wynik Rozwiązanie - rombu o przekątnych 16cm i 12cm, wokół dłuższej przekątnej. Wynik Rozwiązanie Zadanie 6. Oblicz pole powierzchni całkowitej brył, powstałych poprzez obrót:- trójkąta równoramiennego o podstawie 12cm i ramieniu o długości 10cm, wokół wysokości, Wynik Rozwiązanie - prostokąta o wymiarach 8cm x 10 cm, wokół osi symetrii przechodzącej przez krótszy bok. Wynik Rozwiązanie Zadanie 7. Cztery stalowe kulki o promieniu 3cm, zostały przetopione i uformowane w walec o promieniu podstawy 2cm. Oblicz wysokość powstałej bryły. Wynik Rozwiązanie W przypadku jakichkolwiek pytań zapraszamy na nasze forum :) Matematyka dla szkół średnich/maturzystów Wszelkie prawa zastrzeżone Copyright 2012 @ Polecamy Foum o zarabianiu przez internet ktore pokaze Ci czym jest Praca w domu, Jesli jednak szukasz rozrywki zapewnia Ci ja Najlepsze Serwery Minecraft w Polsce warto tez sprawdzic ten: Serwer Minecraft, a jesli budujesz swoj wizerunek w social mediach polecamy kup like aby budowac zasiegi!

bryły obrotowe zadania i rozwiązania